- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
13
- Author / Contributor
- Filter by Author / Creator
-
-
Du, Ruijie (4)
-
Shen, Yanning (4)
-
Khargonekar, Pramod P (2)
-
Liu, Yezi (2)
-
Muthirayan, Deepan (2)
-
Markopolou, Athina (1)
-
Markopoulou, Athina (1)
-
Sinha, Divya A (1)
-
Sinha, Divya Anan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Sinha, Divya Anan; Liu, Yezi; Du, Ruijie; Markopoulou, Athina; Shen, Yanning (, Transactions in Machine Learning Research (TMLR))Graph federated learning is of essential importance for training over large graph datasets while protecting data privacy, where each client stores a subset of local graph data, while the server collects the local gradients and broadcasts only the aggregated gradients. Recent studies reveal that a malicious attacker can steal private image data from the gradient exchange of neural networks during federated learning. However, the vulnerability of graph data and graph neural networks under such attacks, i.e., reconstructing both node features and graph structure from gradients, remains largely under-explored. To answer this question, this paper studies the problem of whether private data can be reconstructed from leaked gradients in both node classification and graph classification tasks and proposes a novel attack named Graph Leakage from Gradients (GLG). Two widely used GNN frameworks are analyzed, namely GCN and GraphSAGE. The effects of different model settings on reconstruction are extensively discussed. Theoretical analysis and empirical validation demonstrate that, by leveraging the unique properties of graph data and GNNs, GLG achieves more accurate reconstruction of both nodal features and graph structure from gradients.more » « lessFree, publicly-accessible full text available June 25, 2026
-
Sinha, Divya A; Du, Ruijie; Liu, Yezi; Markopolou, Athina; Shen, Yanning (, Transactions on Machine Learning Research)Free, publicly-accessible full text available June 1, 2026
-
Muthirayan, Deepan; Du, Ruijie; Shen, Yanning; Khargonekar, Pramod P (, IEEE)
An official website of the United States government
